> Toutes nos certifications > Machine Learning on Google Cloud

Formation : Machine Learning on Google Cloud

Apprentissage automatique sur Google Cloud

Machine Learning on Google Cloud

Apprentissage automatique sur Google Cloud
Télécharger le programme Partager cette formation

Télécharger le programme Partager cette formation

Avec cette formation, vous apprendrez à écrire des modèles d’apprentissage automatique distribués qui évoluent dans TensorFlow 2.x, à effectuer l’ingénierie des features avec BQML et Keras, à évaluer les courbes de perte, à effectuer le réglage d’hyperparamètres, et à former des modèles à grande échelle avec Cloud AI Platform. Vous aurez les réponses à vos questions : qu’est-ce que le machine learning ? Quels types de problèmes peut-il résoudre ? Pourquoi les réseaux de neurones sont-ils populaires ? Comment améliorer la qualité des données et effectuer une analyse exploratoire des données ?


Inter
Intra
Sur mesure

Cours pratique en présentiel ou en classe à distance

Réf. MLG
Prix : 4790 € H.T.
  5j - 35h00
Pauses-café et
déjeuners offerts




Avec cette formation, vous apprendrez à écrire des modèles d’apprentissage automatique distribués qui évoluent dans TensorFlow 2.x, à effectuer l’ingénierie des features avec BQML et Keras, à évaluer les courbes de perte, à effectuer le réglage d’hyperparamètres, et à former des modèles à grande échelle avec Cloud AI Platform. Vous aurez les réponses à vos questions : qu’est-ce que le machine learning ? Quels types de problèmes peut-il résoudre ? Pourquoi les réseaux de neurones sont-ils populaires ? Comment améliorer la qualité des données et effectuer une analyse exploratoire des données ?

Objectifs pédagogiques
À l’issue de la formation, le participant sera en mesure de :
  • Présenter un cas d’utilisation commercial comme un problème d’apprentissage automatique
  • Décrire comment améliorer la qualité des données
  • Effectuer une analyse exploratoire des données
  • Construire et former des modèles d'apprentissage supervisé
  • Optimiser et évaluer les modèles à l’aide des fonctions de perte et des mesures de performance
  • Créer des ensembles de données de formation, d’évaluations et de tests répétables et évolutifs
  • Implémenter des modèles d’apprentissage automatique à l’aide de Keras et de TensorFlow
  • Comprendre l'impact des paramètres de descente de gradient sur la précision la vitesse d'entraînement, la rareté, etc.
  • Représenter et transformer des entités
  • Entraîner des modèles à grande échelle avec AI Platform

Public concerné
Machine learning et data engineers, scientifiques du machine learning, data scientists et data analysts voulant être exposés à l'apprentissage automatique dans le cloud avec TensorFlow 2.x et Keras.

Prérequis
Connaissance des concepts de base de l’apprentissage automatique. Maîtrise de base d’un langage de script - Python de préférence.
Vous recevrez par mail des informations permettant de valider vos prérequis avant la formation.

Programme de la formation

Comment Google effectue le machine learning

  • Développer une stratégie de données autour du machine learning (ML).
  • Examiner les cas d’utilisation qui sont ensuite réinventés à travers une approche de machine learning (ML).
  • Reconnaître les biais que le machine learning (ML) peut amplifier.
  • Tirer parti des outils et de l'environnement de Google Cloud Platform pour faire du ML.
  • Apprendre de l'expérience de Google pour éviter les pièges courants.
  • Effectuer des tâches de science des données dans des blocs-notes collaboratifs en ligne.
  • Appeler des modèles de ML pré-entraînés à partir de Cloud AI Platform.

Se lancer dans le machine learning

  • Décrire comment améliorer la qualité des données.
  • Effectuer une analyse exploratoire des données.
  • Construire et former des modèles d'apprentissage supervisé.
  • Optimiser et évaluer les modèles à l’aide des fonctions de perte et des mesures de performance.
  • Atténuer les problèmes courants qui surviennent dans le ML.
  • Créer des ensembles de données de formation, d'évaluations et de tests répétables et évolutifs.

Introduction à TensorFlow 2.x

  • Créer des modèles d’apprentissage automatique TensorFlow 2.x et Keras.
  • Décrire les composants clés de Tensorflow 2.x.
  • Utiliser la bibliothèque tf.data pour manipuler des données et de grands ensembles de données.
  • Utiliser les API séquentielles et fonctionnelles Keras pour créer des modèles simples et avancées.
  • Former, déployer et produire des modèles de machine learning (ML) à grande échelle avec Cloud AI Platform.

Ingénierie des features

  • Comparer les principaux aspects requis d'une bonne feature.
  • Combiner et créer de nouvelles combinaisons de features grâce à des croisements de features.
  • Effectuer l'ingénierie des features à l'aide de BigQuery Machine Learning (BQML), Keras et Tensorflow 2.x.
  • Découvrir comment prétraiter et explorer les features avec Cloud Dataflow et Cloud Dataprep.
  • Comprendre et appliquer comment TensorFlow transforme les features.

Art et science du machine learning

  • Optimiser les performances du modèle avec le réglage des hyperparamètres.
  • Expérimenter avec les réseaux de neurones et affiner les performances.
  • Améliorer les fonctionnalités du modèle ML avec des couches incorporées.


Certification
Cours officiel sans certification.
Comment passer votre examen ?

Méthodes et moyens pédagogiques
Méthodes pédagogiques;
Animation de la formation en français. Support de cours officiel en anglais.

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques…
Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

Solutions de financement
Pour trouver la meilleure solution de financement adaptée à votre situation : contactez votre conseiller formation.
Il vous aidera à choisir parmi les solutions suivantes :
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • France Travail sous réserve de l’acceptation de votre dossier par votre conseiller France Travail.
  • Le plan de développement des compétences de votre entreprise : rapprochez-vous de votre service RH.
  • Le dispositif FNE-Formation
  • L’OPCO (opérateurs de compétences) de votre entreprise.
  • France Travail sous réserve de l’acceptation de votre dossier par votre conseiller France Travail.

Horaires
En présentiel, les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45. Les pauses et déjeuners sont offerts.
En classe à distance, la formation démarre à partir de 9h.
Pour les stages pratiques de 4 ou 5 jours, quelle que soit la modalité, les sessions se terminent à 16h le dernier jour.

Dates et lieux
Sélectionnez votre lieu ou optez pour la classe à distance puis choisissez votre date.
Classe à distance